If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+17w+21=0
a = 2; b = 17; c = +21;
Δ = b2-4ac
Δ = 172-4·2·21
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-11}{2*2}=\frac{-28}{4} =-7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+11}{2*2}=\frac{-6}{4} =-1+1/2 $
| 16s-10s=12 | | -5x-2(-4+6)=-48 | | 4x~5=12 | | z^2+3z-12=6 | | z· 57= 67 | | 6x+2=-24 | | 0=−16t2+20t+10 | | 57=-5x+3(x+15) | | z^2+3z-12=0 | | 3=3x+5(2x-15) | | h^2+7h+15=5 | | 8x-10=4x=30 | | (x+20)(6x-180)=30000 | | 3x+2(6x+6)=-153 | | -3x-2(-6x-10)=-61 | | 9x-9x=3 | | 5/9m+8+2/9m=22 | | -2x-3(-5x-14)=-36 | | 4.5x1.333-1=8 | | 1/2(12f+5)=0 | | -21+f=-15 | | 12x+25+102+168=360 | | (3y-8)(4y-1)=0 | | -180=-4x-6(5x-4) | | 1+4n=16n | | 2(x+3)+3(x-1)=-15 | | -18-9q=-8q | | d/5-2=2 | | -h-15h=-16 | | 6u-32=92 | | 14t-8=6t1 | | 18h-10h=16 |